Parallel error-correcting output codes classification in volume visualization: parallelism for AI and AI for parallelism

Oscar Amorós Huguet Advisors: Sergio Escalera, Anna Puig UPC-UB-URV

Introduction

- Main Goal: explore AI and parallelism interaction.
- Contributions:
 - New parallel programming tools (AIMparallel and SimpleOpenCL)
 - Semi automatic classification:
 - Framework for 3D scan medical images
 - Parallel implementation of the framework (Parallelism for AI)
 - A new parallel system proposal based on SOMAS (AI for parallelism)

AIMparallel

Methodology and nomenclature. Overheads:

- TCO: cycles lost due to data movement
- WPO: cycles lost due to load unbalancing
- TMO: cycles lost due to thread management

AIMparallel

- Easy to use
- Avoiding the worst implementation
- More useful with complex algorithms
- For fine tuning need to profile

Example

OP1	OP2	System GPU	
aTCO >	> aTCO	sTCO	
aWPO <	aWPO	۸ sWPO	¥
aTMO =	aTMO	∛ sTMO	

Classification problem

A semi automatic classification system

C.P.: proposal ECOC

Combines binary classifiers (h) to create a multiclass (y) classifier

							Μ								
h ₁	h ₂	h3	h_4	h ₅	h ₆	h ₇	h ₈	hg	h10	h11	h ₁₂	h ₁₃	h ₁₄	h15	HD(X,y
1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	→ ^{0.5}
-1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	→ 4.5
0	-1	0	0	0	-1	0	0	0	1	1	1	0	0	0	→ <u>5.5</u>
0	0	-1	0	0	0	-1	0	0	-1	0	0	1	1	0	→ <u>5.5</u>
0	0	0	-1	0	0	0	-1	0	0	-1	0	-1	0	1	→ <u>5.5</u>
0	0	0	0	-1	0	0	0	-1	0	0	-1	0	-1	-1	$\rightarrow 5.5$
1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1

C.P.: proposal Adaboost

ALGORITHM 1: Discrete Adaboost training algorithm.

- 1: Start with weights $w_i = 1/k, i = 1, .., k$.
- 2: Repeat for m = 1, 2, .., (M):
 - (a) Fit the classifier $f_m(\rho) \in -1, 1$ using weights w_i on the training data.
 - (b) Compute $\operatorname{err}_m = E_w[1_{(l(\rho) \neq fm_{(\rho)})}], c_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m).$
 - (c) Set $w_i \leftarrow w_i \exp[c_m \cdot 1_{(l(\rho_i) \neq fm_{(\rho_i)})}], i = 1, 2, ..., k$, and normalize so that $\sum_i w_i = 1$.

3: Output the classifier
$$F(\rho) = \operatorname{sign}\left[\sum_{m=1}^{\mathcal{M}} c_m f_m(\rho)\right]$$
.

ALGORITHM 2: Discrete Adaboost testing algorithm.

- 1: Given a test sample ρ
- 2: $F(\rho) = 0$
- 3: Repeat for $m = 1, 2, ..., \mathcal{M}$:
 - (a) $F(\rho) = F(\rho) + c_m (P_m \cdot \rho^m < P_m \cdot T_m);$
- 4: Output $sign(F(\rho))$

C.P.: proposal ECOC submatrix

	SM								
h ₂	h ₅	h ₆	h ₉	h ₁₀	h ₁₁	h ₁₂	, h ₁	4 h	
1	1	0	0	0	0	0	0	0	
0	0	1	1	0	0	0	0	0	
-1	0	-1	0	1	1	1	0	0	
0	0	0	0	-1	0	0	1	0	
0	0	0	0	0	-1	0	0	1	
0	-1	0	-1	0	0	-1	-1	-1	

C.P.: adaptive decoding

Loss-Weighted strategy: Given a coding matrix M, M = 1 1 -1 0 -1 1 0 0 -1 1 1 -1 1) Calculate the performance matrix H, $H(i,j) = rac{1}{m_i}\sum_{k=1}^{m_i} arphi(h^j(
ho^i_k),i,j)$ (3.3)based on $\varphi(x^j, i, j) = \begin{cases} 1, & \text{if } X^j = y_i^j, \\ 0, & \text{otherwise.} \end{cases}$ (3.4) $H = \begin{bmatrix} 0.955 \ 0.955 \ 1.000 \ 0.000 \ 0.900 \ 0.800 \ 0.000 \ 0.000 \ 1.000 \ 0.905 \ 0.805 \ 0.805 \ 0.805 \end{bmatrix}$ 2) Normalize $H: \sum_{j=1}^{n} M_W(i,j) = 1, \quad \forall i = 1, ..., N:$ $M_{W}(i,j) = \frac{H(i,j)}{\sum_{j=1}^{n} H(i,j)}, \quad \forall i \in [1,...,N], \quad \forall j \in [1,...,n]$ (3.5) $M_{W} = \begin{bmatrix} 0.328 \ 0.328 \ 0.328 \ 0.344 \ 0.000 \\ 0.529 \ 0.471 \ 0.000 \ 0.000 \\ 0.285 \ 0.257 \ 0.229 \ 0.229 \end{bmatrix}$ 3) Given a test data sample ρ , decode based on, $\delta(
ho,i) = \sum M_W(i,j) L(y_i^j \cdot f(
ho,j))$ (3.6)

C.P.: Adaboost Look up table (LUT) representation

ALGORITHM 2: Discrete Adaboost testing algorithm.

- 1: Given a test sample ρ
- 2: $F(\rho) = 0$
- 3: Repeat for $m = 1, 2, ..., \mathcal{M}$: (a) $F(\rho) = F(\rho) + c_m (P_m \cdot \rho^m < P_m \cdot T_m)$;
- 4: Output sign $(F(\rho))$

Parallelization Implementation

ALGORITHM 3: Cri	tical section serial pseudocode for the testing stage.
inputVolume :	Original 3D voxel model with density values (d)
outputVolume :	Multiclass labeled voxel model with single value samples
voxelFeatures :	pointer to the 8 sample features for the voxel sample being processed
\mathcal{L} :	\mathcal{L} matrix pointer containing the LUTs
X :	code word of binary decission values for a single voxel sample
M :	coding matrix
background_value:	density value threshold for the actual voxel sample to be processed
for $z \leftarrow 0$ to dim_z de	0
for $y \leftarrow 0$ to dim	$\mathbf{d}_{y} \mathbf{d}_{0}$
for $x \leftarrow 0$ to	dim_x do
$d \leftarrow input$	t[z][y][x] // d refers to the density value in the voxel model
if $d > ba$	$ckground_value \ {f then}$
compu	teGradient(z, y, x, inputVolume[z][y][x], voxelFeatures); // T1
XCode	$eEstimation(voxelFeatures, \mathcal{L}, X); // T2$
FinalI	Labeling(X, M, outputVolume[z][y][x]); // T3
end	
end	
end	
end	

P.I.: Parallelization proposals

- Tasks: T1 T2 and T3
- T1 is a 7 point stencil operation

3 position values	Voxel value	4 gradient values

P.I.: Parallelization proposals

Task 2 option 1 and Task 3 option 1

P.I.: Parallelization proposals

Task 2 option 2

P.I.: GPU implementation

Torax classification accuracies

Data	N	Sel.	Z	CPU Core i5	OpenMP Core i5	GCD Core i5	OpenCL GTX 470
\mathbf{set}		classe	s				
Foot	3	2	2	0.387	0.111	0.111	0.008
	3	3	3	0.577	0.165	0.165	0.002
	4	3	5	0.948	0.271	0.271	0.020
	4	4	6	1.139	0.325	0.325	0.038
	6	6	15	4.986	0.760	0.769	0.062
	9	9	36	8.319	1.787	1.777	0.091
Brain	9	2	15	39.396	11.190	11.177	0.358
	9	4	26	68.485	19.475	19.615	0.649
	9	6	33	87.558	24.947	24.875	0.848
	9	9	36	96.859	27.642	27.557	1.263
Thorax	2	2	1	26.849	7.604	7.600	2.694
	8	2	13	321.768	94.589	94.579	2.011
	8	4	22	564.577	160.801	160.784	3.532
	8	8	28	754.203	220.430	220.388	6.007
	9	7	35	923.225	260.751	259.489	5.955
	9	9	36	971.915	270.751	269.751	7.763

- With Radeon HD 7970
- Thorax N=9 Sel classes=9 and Z=36
- Execution time = 2,2 seconds
- No code change

	Geforce GTX 470	Radeon HD 7970	Comparison	
Processing Elements	448	2048	4,5x	
Execution time	7,763	2,2	3,5x	

AI parallel system proposal

OmpSs (BSC)

AI.P.S.P.: Environment

Data ID	Data

	GLOBAL SOURCE									
В	В									
						Data depot				
FIFO B B	FIFO	FIFO	FIFO	FIFO B	FIFO B	Data IDDataData IDDataData IDDataData IDData				

AI.P.S.P.: Agents

AI.P.S.P.: Agents

AI.P.S.P.: Desired behaviors

- Hierarchical scheduling
- Data affinity
- Data flow
- Program flow

- Resource usefulness evaluation "V"
- Each agent has it's own view of "V" for each resource
- V = PV + Rr
- PV = amount of matches a resource adds
- Rr = Resource ratio is the amount of computational resources available to the Agent
- We can add network costs

AI.P.S.P.: Experiments and results

- First environment simulator
- We control
 - Number of Blocks
 - Number of Data elements
 - Number of Agents on the Grid
 - Number of Instructions for each Block
 - Number of data requests the Agent will raise to the grid on a single time step
 - Number of instructions the Agent will fetch and execute on each time step

• Next step:

- Adding the Agent program to generate the exchange Behavior
- Use agent programming language (2APL for instance)
- Use Adapteva's Parallella board as a Node.

Conclusions

- Parallelism for AI:
 - New parallel programming tools (AIMparallel and SimpleOpenCL)
 - Semi automatic classification:
 - Framework for 3D scan medical images
 - Parallel implementation
- Al for parallelism:
 - A parallel computing system
 - Based on an agent strategy for automatic scheduling

Future work

- Parallelism for AI:
 - Apply AIMparallel to other AI methods and architectures
 - Increase accuracy with more features and context
 - Increase performance (new GPU features and reducing aWPO)
- Al for parallelism:
 - Implement a simple working system (Either simulator or on Parallela board)

Future work: Hardware proposal

• Adapteva's Parallella board as Node

