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Abstract
In this paper, we present a full-automatic Spatio-Temporal GrabCut human segmentation method-
ology which benefits from the combination of tracking and segmentation. GrabCut initialization
is performed by a HOG-based subject detection, face detection, and skin color model for seed ini-
tialization. Spatial information is included by means of Mean Shift clustering whereas temporal
coherence is considered by the historical of Gaussian Mixture Models. Moreover, full face and
pose recovery is obtained by combining human segmentation with Active Appearance Models and
Conditional Random Fields. Results over public data sets as well as in a new Human Limb data set
show a robust segmentation and recovery of both face and pose using the presented methodology.
Keywords: Human segmentation, GrabCut, Pose recovery, Face modelling

1. Introduction

Human segmentation in uncontrolled environments is a hard task because of the constant changes
produced in natural scenes: illumination changes, moving objects, changes in the point of view, or
occlusions, just to mention a few. Because of the nature of the problem, a common way to proceed
is to discard most part of the image so that the analysis can be performed on a reduced set of small
candidate regions. In Dalal and Triggs (2005), the authors propose a full-body detector based on
a cascade of classifiers ( Viola and Jones (2004)) using HOG features. This methodology is cur-
rently being used in several works related to the pedestrian detection problem ( Geronimo et al.
(2009); Andriluka et al. (2008)). GrabCut ( Rother et al. (2004)) has also shown high robustness
in Computer Vision segmentation problems, defining the pixels of the image as nodes of a graph
and extracting foreground pixels via iterated Graph Cut optimization. This methodology has been
applied to the problem of human body segmentation with high success ( Ferrari et al. (2008, 2009)).
Many other works involving GrabCut -and graph-cuts in general- can be found ( Chen et al. (2008);
Lombaert et al. (2005); Kwolek (2009); Nagahashi et al. (2007)), what indicates that is a state-of-
the-art methodology in image segmentation. In the case of working with sequences of images, this
optimization problem can also be considered to have temporal coherence. In the work of Corri-
gan et al. (2008), the authors extended the Gaussian Mixture Model (GMM) of GrabCut algorithm
so that the color space is complemented with the derivative in time of pixel intensities in order to
include temporal information in the segmentation optimization process. However, the main prob-
lem of that method is that moving pixels corresponds to the boundaries between foreground and
background regions, and thus, there is no clear discrimination.
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Once a region of interest is determined, pose is often recovered by the determination of the
body limbs together with their spatial coherence (also with temporal coherence in case of image
sequences). Most of these approaches are probabilistic, and features are usually based on edges or
’appearance’. In Ramanan (2006), the author propose a probabilistic approach for limb detection
based on edge learning complemented with color information. The image of probabilities is then
formulated in a Conditional Random Field scheme and optimized using belief propagation. This
work has obtained robust results and has been extended by other authors including local GrabCut
segmentation and temporal refinement of the CRF model ( Ferrari et al. (2008, 2009)).

In this paper, we propose a full-automatic Spatio-Temporal GrabCut human segmentation method-
ology which benefits from the combination of tracking and segmentation. First, subjects are detected
by means of a HOG-based cascade of classifiers. Face detection and skin color model are used to
define a set of seeds used to initialize GrabCut algorithm. Spatial information is taken into ac-
count by means of Mean Shift clustering, whereas temporal information is considered taking into
account the pixel probability membership to an historical of Gaussian Mixture Models. Moreover,
the methodology is combined with Shape and Active Appearance Models to define three different
meshes of the face, one near frontal view, and the other ones near lateral views. Temporal coherence
and fitting cost are considered in conjunction with GrabCut segmentation to allow a smooth and ro-
bust face fitting in video sequences. Finally, the limb detection and a CRF model are applied on the
obtained segmentation, showing high robustness capturing body limbs due to the accurate human
segmentation. In order to test the proposed methodology, we use public data sets and present a new
Human Limb data set useful for human segmentation, limb detection, and pose recovery purposes.

The rest of the paper is organized as follows: Section 2 describes the proposed methodology,
presenting the spatio-temporal GrabCut segmentation, the Active Appearance models for face fit-
ting, and the pose recovery methodology. Experimental results on public and novel data sets are
performed in Section 3. Finally, Section 4 concludes the paper.

2. Full-body pose recovery

In this section, we present the Spatio-Temporal GrabCut methodology to deal with the problem
of automatic human segmentation in video sequences. Then, we describe the Active Appearance
Models used to recover the face, and the body pose recovery methodology based on the approach
of Ramanan (2006). All methods presented in this section are combined to improve final segmenta-
tion and pose recovery. Figure 1 illustrates the different modules of the project.

2.1 GrabCut segmentation

In Rother et al. (2004), the authors proposed an approach to find a binary segmentation -Background,
Foreground- of an image by formulating an energy minimization scheme as the one presented
in Boykov and Jolly (2001); Boykov and Funka-Lea (2006); Kolmogorov and Zabih (2004), ex-
tended using color instead of just gray-scale information. Given a color image I , let us consider the
array z = (z1, ..., zn, ..., zN ) of N pixels where zi = (Ri, Gi, Bi), i ∈ [1, ..., N ] in RGB space. The
segmentation is defined as array α = (α1, ...αN ), αi ∈ {0, 1}, assigning a label to each pixel of the
image indicating if it belongs to background or foreground. A trimap T is defined by the user -in a
semi-automatic way-, consisting on three regions: TB , TF and TU , each one containing initial back-
ground, foreground, and uncertain pixels, respectively. Pixels belonging to TB and TF are clamped
as background and foreground respectively -that means GrabCut will not be able to modify these

2



POSE AND FACE RECOVERY VIA SPATIO-TEMPORAL GRABCUT HUMAN SEGMENTATION

labels-, whereas those belonging to TU are actually the ones the algorithm will be able to label.
Color information is introduced by GMMs. A full covariance GMM of K components is defined
for background pixels (αi = 0), and another one for foreground pixels (αj = 1), parametrized as
follows

θ = {π(α, k), µ(α, k),Σ(α, k), α ∈ {0, 1}, k = 1..K}, (1)

being π the weights, µ the means and Σ the covariance matrices of the model. We also consider
the array k = {k1, ..., ki, ...kN}, ki ∈ {1, ...K}, i ∈ [1, ..., N ] indicating the component of the
background or foreground GMM (according to αi) the pixel zi belongs to. The energy function for
segmentation is then

E(α,k,θ, z) = U(α,k,θ, z) + V(α, z), (2)

where U is the likelihood potential, based on the probability distributions p(·) of the GMM:

U(α,k,θ, z) =
∑

i

−log p(zi|αi, ki, θ)− log π(αi, ki) (3)

and V is a regularizing prior assuming that segmented regions should be coherent in terms of color,
taking into account a neighborhood C around each pixel

V(α, z) = γ
∑

{m,n}∈C

[αn 6= αm] exp (−β‖zm − zn‖2) (4)

With this energy minimization scheme and given the initial trimap T , the final segmentation is
performed using a minimum cut algorithm ( Boykov and Kolmogorov (2001); Boykov and Jolly

Figure 1: Overall block diagram of the methodology.
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(2001); Boykov and Funka-Lea (2006)). The classical semi-automatic GrabCut algorithm is sum-
marized in Algorithm 1.

Algorithm 1 Original GrabCut algorithm.
1: Trimap T initialization with manual annotation.
2: Initialize ai = 0 for n ∈ TB and ai = 1 for n ∈ TU ∪ TF .
3: Initialize Background and Foreground GMMs from sets an = 0 and an = 1 respectively, with

k-means.
4: Assign GMM components to pixels.
5: Learn GMM parameters from data z.
6: Estimate segmentation: Graph-cuts.
7: Repeat from step 4, until convergence.

(a) (b) (c)

(d) (e) (f)

Figure 2: STGrabcut pipeline example: (a) Original frame, (b) Seed initialization, (c) GrabCut, (d)
Probabilistic re-assignment, (e) Refinement and (f) Initialization mask for ft+1.
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2.2 Automatic initialization

Our proposal bases on the previous GrabCut framework, focusing on human body segmentation,
being fully automatic, and extending it by taking into account temporal coherence. We refer to each
frame of the video as ft, t ∈ {1, ..., M} being M the length of the sequence. Given a frame ft, we
first apply a person detector based on a cascade of classifiers using HOG features ( Dalal and Triggs
(2005)). Then, we initialize the trimap T from the bounding box B retuned by the detector: TU =
{zi ∈ B}, TB = {zi /∈ B}. Furthermore, in order to increase the accuracy of the segmentation
algorithm, we include Foreground seeds exploiting spatial and appearance prior information. On
one hand, we define a small central region R inside B and set these pixels as Foreground. On the
other, we apply a face detector based on a cascade of classifiers using Haar-like features Viola and
Jones (2004) over B, and learn a skin color model hskin. All pixels inside B fitting in hskin are also
set to foreground. Therefore, we initialize TF = {zi ∈ R} ∪ {zi ∈ δ(zi, hskin)}, where δ returns
the set of pixels belonging to the color model defined by hskin. An example of seed initialization is
shown in Figure 2(b).

2.3 Spatial extension

Once we have initialized the trimap, we can apply the iterative minimization algorithm shown in
steps 4 to 7 of original GrabCut (Algorithm 1). However, instead of applying k-means for the
initialization of the GMMs we propose to use Mean-Shift clustering, which also takes into account
spatial coherence. Given an initial estimation of the distribution modes mh(x0) and a kernel function
g, Mean-shift iteratively updates the mean-shift vector with the following formula:

mh(x) =
∑n

i=1 xig(‖ x−xi
h ‖2)∑n

i=1 g(‖ x−xi
h ‖2)

(5)

until it converges, where xi contains the value of pixel zi in CIELuv space and its spatial coor-
dinates, and returns the centers of the clusters (distribution modes) found. After convergence, we
obtain a segmentation αt and the updated foreground and background GMMs θt at frame ft, which
are used for further initialization at frame ft+1. The result of this step is shown in Figure 2(c).
Finally, we refine the segmentation of frame ft eliminating false positive foreground pixels. By
definition of the energy minimization scheme, GrabCut tends to find convex segmentation masks
having a lower perimeter, given that each pixel on the boundary of the segmentation mask con-
tributes on the global cost. Therefore, in order to eliminate these background pixels (commonly in
concave regions) from the foreground segmentation, we re-initialize the trimap T as follows

TB = {zi|αi = 0} ∪

zi|

t∑

k=t−j

p(zi|αi = 0, ki, θ
k)

j
>

t∑

k=t−j

p(zi|αi = 1, ki, θ
k)

j





TF = {zi ∈ δ(zi, hskin)}
TU = {zi|αi = 1} \ TB \ TF (6)

where the pixel background probability membership is computed using the GMM models of
previous segmentations. This formulation can also be extended to detect false negatives. However,
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in our case we focus on false positives since they appear frequently in the case of human segmen-
tation. The result of this step is shown in Figure 2(d). Once the trimap has been redefined, false
positive foreground pixels still remain, so the new set of seeds is used to iterate again GrabCut
algorithm, resulting in a more accurate segmentation, as we can see in Figure 2(e).

2.4 Temporal extension

Considering A as the binary image representing α at ft -the one obtained before the refinement-,
we initialize the trimap for ft+1 as follows

TF = {zi ∈ I|zi ∈ Aª STe, α(zi) = 1}
TU = {zi ∈ I|zi ∈ A⊕ STd, α(zi) = 1} \ TF

TB = {zi, zi ∈ I} \ (TF ∪ TU ) (7)

where ª and ⊕ are erosion and dilation operations with their respective structuring elements
STe and STd, and αi := α(zi). The structuring elements are simple squares of a given size de-
pending on the size of the person and the degree of movement we allow from ft to ft+1, assuming
smoothness in the movement of the person. An example of a morphological mask is shown in Fig-
ure 2(f). Spatial information could be also included in the mean-shift algorithm in conjunction with
color and spatial information. However, we included this information explicitly to be anisotropic.
The whole segmentation methodology is detailed in the ST-GrabCut Algorithm 2.

Algorithm 2 Spatio-Temporal GrabCut algorithm.
1: Person detection on f1.
2: Face detection and skin color model learning.
3: Trimap T initialization with detected bounding box and learnt skin color model.
4: Initialize ai = 0 for n ∈ TB and ai = 1 for n ∈ TU ∪ TF .
5: Initialize Background and Foreground GMMs from sets an = 0 and an = 1 respectively, with

Mean-shift.
6: for t = 1 ... M
7: Person detection on ft.
8: Assign GMM components to pixels of ft.
9: Learn GMM parameters from data z.

10: Estimate segmentation: Graph-cuts.
11: Repeat from step 8, until convergence.
12: Re-initialize trimap T (equation 6).
13: Assign GMM components to pixels.
14: Learn GMM parameters from data z.
15: Estimate segmentation: Graph-cuts.
16: Repeat from step 12, until convergence.
17: Initialize trimap T using segmentation obtained in step 11 after convergence (equation 7)

for ft+1.
18: end for
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2.5 Face fitting

Once we have properly segmented the body region, next step consists of fitting the face and the body
limbs. For the case of face recovery, we base our procedure on mesh fitting using Active Appearance
Models (AAM), that benefits from Active Shape Models and color and texture information Cootes
et al. (a).

Active Appearance Model is generated by combining a model of shape and texture variation.
First, a set of points are marked on the face of the training images that are aligned, and a statistical
shape model is build Cootes et al. (b). Each training image is warped so the points match those of
the mean shape. This is raster scanned into a texture vector, g, which is normalized by applying
a linear transformation, g 7→ (g − µg1)/σg, where 1 is a vector of ones, and µg and σ2

g are the
mean and variance of elements of g. After normalization, gT 1 = 0 and |g| = 1. Then, principal
component analysis is applied to build a texture model. Finally, the correlations between shape and
texture are learnt to generate a combined appearance model. The appearance model has parameter
c controlling the shape and texture according to

x = x + Qsc (8)

g = g + Qgc (9)

where x is the mean shape, g the mean texture in a mean shaped patch, and Qs, Qg are matrices
designing the modes of variation derived from the training set. A shape X in the image frame can
be generated by applying a suitable transformation to the points, x : X = St(x). Typically, St

will be a similarity transformation described by a scaling s, an in-plane rotation, θ, and a translation
(tx, ty).

Once constructed the AAM, it is deformed on the image to detect and segment the face appear-
ance as follows. During matching, we sample the pixels in the region of interest gim = Tu(g) =
(u1 + 1)gim + u21, where u is the vector of transformation parameters, and project into the texture
model frame, gs = T−1

u (gim). The current model texture is given by gm = g + Qgc, and the
difference between model and image (measured in the normalized texture frame) is as follows

r(p) = gs − gm (10)

Given the error E = |r|2, we compute the predicted displacements δp = −Rr(p), where R =(
∂rT

∂p
∂r
∂p

)−1
∂rT

∂p . The model parameters are updated p 7→ p + kδp, where initially k = 1. The

new points X′ and model frame texture g′m are estimated, and the image is sampled at the new points
to obtain g′mi and the new error vector r′ = T−1

u′ (g′im)−g′m. A final condition guides the end of each
iteration: if |r′|2 < E, then we accept the new estimate, otherwise, we set to k = 0.5, k = 0.25,
and so on. The procedure is repeated until no improvement is made to the error.

Taking into account the discontinuity that appears when a face moves from frontal to profile
view, we use three different AAM corresponding to three meshes of 21 points: frontal view =F ,
right laterial view =R, and left laterial view =L. In order to include temporal and spatial coherence,
meshes at frame ft+1 are initialized by the fitted mesh points at frame ft. Additionally. we include
a temporal change-mesh control procedure, as follows

=t+1 = min=t+1{E=F
, E=R

, E=L
},=t+1 ∈ ν(=t) (11)

where ν(=t) corresponds to the meshes contiguous to the mesh =t fitted at time t (including
the same mesh), and E=i is the fitting error cost of mesh =i. This constraint avoids false jumps and
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imposes smoothness in the temporal face behavior (e.g. a jump from right to left profile view is not
allowed).

In order to obtain a more accurate pose estimation, after fitting the mesh, we take advantage
of its variability to differentiate among a set of head poses. We have defined five different head
poses: right, middle-right, frontal, middle-left, and left. In order to define this set, the fitted frontal
meshes in the training set are classified in three different poses: middle-right, frontal, and middle
left, whereas the training samples of the left and right meshes are directly classified in full-left and
full-right poses, respectively. In order to learn the five different head poses, training images are
aligned, and PCA is applied to save the 20 most representative eigenvectors. Then, a new mesh
is projected to that new space and classified to one of the five different head poses according to a
3-Nearest Neighbor rule.

Figure 3 shows examples of the AAM model fitting in images (obtained from Huang et al.
(2007)) for the three different meshes.

Figure 3: From left to right: left, frontal, and right mesh fitting using AAM.

2.6 Pose recovery

Considering the refined segmented body region obtained using the proposed ST-GrabCut algorithm,
we construct a pictorial structure model ( Felzenszwalb and Huttenlocher; Ronfard et al. (2002)). We
use the method of Ramanan ( Ramanan (2006); Ferrari et al. (2009)), which captures the appearance
and spatial configuration of body parts. A person’s body parts are tied together in a tree-structured
conditional random field. Parts, li, are oriented patches of fixed size, and their position is parame-
terized by location (x, y) and orientation φ. The posterior of a configuration of parts L = li given a
frame ft is

P (L|ft) ∝ exp


 ∑

(i,j)∈E

Ψ(li, lj) +
∑

i

Φ(li|ft)


 (12)

The pairwise potential Ψ(li, lj) corresponds to a spatial prior on the relative position of parts
and embeds the kinematic constraints. The unary potential Φ(li|I) corresponds to the local image
evidence for a part in a particular position. Inference is performed over tree-structured conditional
random field.
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Since the appearance of the parts is initially unknown, a first inference uses only edge features
in Φ. This delivers soft estimates of body part positions, which are used to build appearance models
of the parts and background (color histograms). Inference is then repeated with Φ using both edges
and appearance. This parsing technique simultaneously estimates pose and appearance of parts.
For each body part, parsing delivers a posterior marginal distribution over location and orientation
(x, y, φ) ( Ramanan (2006); Ferrari et al. (2009)).

3. Results

Before the presentation of the results, we discuss the data, methods and parameters of the compara-
tive, and validation measurements.

◦ Data: We use the public image sequences of the Chroma Video Segmentation Ground Truth
(cVSG, Tiburzi et al. (2008)), a corpus of video sequences and segmentation masks of people.
Chroma based techniques have been used to record Foregrounds and Backgrounds separately, being
later combined to achieve final video sequences and accurate segmentation masks almost automat-
ically. Some samples of the sequence we have used for testing are shown in Figure 4(a). The
sequence has a total of 307 frames. This image sequence includes several critical factors that make
segmentation difficult: object textural complexity, object structure, uncovered extent, object size,
Foreground and Background velocity, shadows, background textural complexity, Background mul-
timodality, and small camera motion.

As a second database we have also used a set of 30 videos corresponding to the defense of un-
dergraduate thesis at the University of Barcelona to test the methodology in a different environment
(UBDataset). Some samples of this data set are shown in Figure 4(b).

Moreover, we present the Human Limb data set, a new data set composed by 227 images from
25 different people. At each image, 14 different limbs are labeled (see Figure 4(c)), including the
”don’t care” label between adjacent limbs, as described in Figure 5. Backgrounds are from different
real environments with different visual complexity. This data set is useful for human segmentation,
limb detection, and pose recovery purposes1.

◦ Methods: We test the classical semi-automatic GrabCut algorithm for human segmentation
comparing with the proposed ST-GrabCut algorithm. We also test the mesh fitting and body pose
recovery methodologies on the obtained segmentations.

◦ Validation measurements: In order to evaluate the robustness of the methodology for human
body segmentation, face and pose fitting, we use the ground truth masks of the images to compute
the overlapping factor O as follows

O =
∑

MGC ∩MGT∑
MGC ∪MGT

(13)

where MGC and MGT are the binary masks obtained for spatio-temporal GrabCut segmentation
and the ground truth mask, respectively.

3.1 Spatio-tempral GrabCut Segmentation

First, we test the proposed ST-GrabCut segmentation on the sequence from the public cVSG cor-
pus. The results for the different experiments are shown in Table 1. In order to avoid the manual

1. The data set is public at http://www.maia.ub.es/∼sergio/Code.html
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(a)

(b)

(c)

Figure 4: (a) Samples of the cVSG corpus and (b) UBDataset image sequences, and (c) Human-
Limb data set.
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Figure 5: Human Limb data set labels description.

Approach Mean overlapping
K-means 0.5356
Mean-shift 0.5424
Morphology 0.6229
ST-GrabCut 0.8747

Table 1: GrabCut and ST-GrabCut Segmentation results on cVSG corpus.

initialization of classical GrabCut algorithm, for all the experiments, seed initialization is performed
applying the commented person HOG detection, face detection, and skin color model. First row
of Table 1 shows the overlapping performance of eq.(13) applying GrabCut segmentation with k-
means clustering to design the GMM models. Second row shows the overlapping performance
considering Mean Shift clustering to design the GMM models. One can see a slight improvement
when using the second strategy. This is mainly due to the fact that Mean Shift clustering takes into
account spatial information of pixels in clustering time, which better defines contiguous pixels of
image to belong to GMM models of foreground and background. Third performance in Table 1
shows the overlapping results considering the morphology refinement based on previous segmen-
tation. In this case, we obtain near 10% of performance improvement respect the previous result.
Finally, last result of Table 1 shows the full-automatic ST-GrabCut segmentation overlapping per-
formance. One can see that it achieves about 25% of performance improvement in relation with
the previous best performance. Some segmentation results obtained by the GrabCut algorithm for
the cVSG corpus are shown in Figure 6. Note that the ST-GrabCut segmentation is able to robustly
segment convex regions. We have also applied the ST-GrabCut segmentation methodology on the
image sequences of UBDataset. Some segmentations are shown in Figure 6.

3.2 Face fitting

In order to measure the robustness of the spatio-temporal AAM mesh fitting methodology, we per-
formed the overlapping analysis of meshes in both un-segmented and segmented image sequence of
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(a)

(b)

(c)

Figure 6: Segmentation examples of (a) UBDataset sequence 1, (b) UBDataset sequence 2 and (c)
cVSG sequence.

the public cVSG corpus. Overlapping results are shown in Table 3. One can see that the mesh fitting
works fine in unsegmented images, obtaining a final mean overlapping of 89.60%. However, note
that combining the temporal information of previous fitting and the ST-GrabCut segmentation, the
face mesh fitting considerably improves, obtaining a final of 96.36% of overlapping performance.
Some example of face fitting using the AAM meshes for different face poses of the cVSG corpus
are shown in Figure 7.

Finally, we have tested the classification of the five face poses on the cVSG corpus, obtaining
the percentage of frames of the subject at each pose. The obtained percentages are shown in Table 3.

12
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Figure 7: Samples of the segmented cVSG corpus image sequences fitting the different AAM
meshes.

Figure 8: Pose recovery results in cVSG sequence.

3.3 Body limbs recovery

Finally, we combine the previous segmentation and face fitting with a full body pose recovery
( Ramanan (2006)). In order to show the benefit of applying previous ST-GrabCut segmentation, we
perform the overlapping performance of full pose recovery with and without human segmentation,
always within the bounding box obtained from HOG person detection. Results are shown in Table 4.
One can see that pose recovery considerably increases its performance when reducing the region of
search based on ST-GrabCut segmentation. Some examples of pose recovery within the human
segmentation regions for cVSG corpus and UBdataset are shown in Figure 8. One can see that in
most of the cases body limbs are correctly detected. Only in some situations, occlusions or changes
in body appearance can produce a wrong limb fitting.

In Figure 9 we show the application of the whole framework to perform temporal tracking,
segmentation and full face and pose recovery. The colors correspond to the body limbs. The colors

Approach Mean overlapping
Mesh fitting without segmentation 0.8960
ST-Grabcut & Temporal mesh fitting 0.9636

Table 2: AAM mesh fitting on original images and segmented images of the cVSG corpus.
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Face view Percentage of frames
Left view 0.1300
Near Left view 0.1470

Frontal view 0.2940
Near Right view 0.1650
Right view 0.2340

Table 3: Face pose percentages on the cVSG corpus.

Approach Mean overlapping
Limb recovery without segmentation 0.7919
ST-Grabcut & Limb recovery 0.8760

Table 4: Overlapping of body limbs based on ground truth masks.

increase in intensity based on the instant of time of its detection. One can see the robust detection
and temporal coherence based on the smooth displacement of face and limb detections.

Figure 9: Application of the whole framework (pose and face recovery) on an image sequence.

3.4 Human Limb data set

In this last experiment, we test our methodology on the presented Human Limb data set. From
the 14 total limb annotations, we grouped them into six categories: trunk, up-arms, up-legs, low-
arms, low-legs, and head, and we tested the full pose recovery framework. In this case, we tested
the body limb recovery with and without applying the ST-GrabCut segmentation, and computed
three different overlapping measures: %, that corresponds to the overlapping percentage defined in
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Trunk Up-arms Up-legs Low-arms Low-legs Head Mean

% No segmentation 0.58 0.53 0.59 0.50 0.48 0.67 0.56
STGrabCut∗ 0.58 0.53 0.58 0.50 0.56 0.67 0.57

Wins No segmentation 106 104 108 109 68 120 102.5
STGrabCut∗ 121 123 119 118 159 107 124.5

Match No segmentation 133 127 130 121 108 155 129
STGrabCut∗ 125 125 128 117 126 157 129.66

Table 5: Overlapping percentages between body parts -Intersection over Union-, wins -comparing
the highest overlappings with and without segmentation-, and matchings -considering only
overlappings greater than 0.6-.

∗ STGrabCut was used without taking into account temporal information.

eq.(13), Wins, that corresponds to the number of Limb regions with higher overlapping comparing
both strategies, and Match, that corresponds to the number of limb recoveries with overlapping
superior to 0.6. The results are shown in Table 5. One can see that because of the reduced region
where the subjects appear, in most cases there is no significant difference applying the limb recovery
procedure with or without previous segmentation. Moreover, the segmentation algorithm is not
working at maximum performance due to the same reason, since very small background regions
are present in the images, and thus the background color model is quite poor. On the other hand,
looking at the mean average overlapping in the last column of the table, one can see that ST-GrabCut
improves for all overlapping measures the final limb overlapping. In particular, in the case of the
Low-legs recovery is when a more clear improvement appears using ST-GrabCut segmentation. The
part of the image corresponding to Low-legs is where more background influence exists, and thus
the limb recovery has the highest confusion. However, as ST-GrabCut is able to properly segment
the concave regions of the Low-legs regions, a significant improvement is obtained when applying
the limb recovery methodology. Some results are illustrated on the images of Figure 10, where the
images on the bottom correspond to the improvements obtained using the ST-GrabCut algorithm.
Finally, Figure 11 show examples of the face fitting methodology applied on the human body limb
data set.

4. Conclusion

In this paper, we presented an evolution of the semi-automatic GrabCut algorithm for dealing with
the problem of human segmentation in image sequences. The new full-automatic ST-GrabCut algo-
rithm uses a HOG-based person detector, face detection, and skin color model to initialize GrabCut
seeds. Spatial coherence is introduced via Mean Shift clustering, and temporal coherence is consid-
ered based on the historical of Gaussian Mixture Models. The segmentation procedure is combined
with Shape and Active Appearance models to perform full face and pose recovery.

One of the problems we tackled with higher influence in the final results was the GrabCut bias
towards convex segmentations. Since human silouettes have many concavities, the segmentations
obtained with GrabCut contain many errors. With our probabilistic reassignment of pixels based
on color information from a set of frames we are able to correct large false positive regions in the
segmentation, which results in a great improvement as showed by quantitative results.

Furthermore, we have demonstrated that pose recovery is enhanced by a prior segmentation of
the subject, due to the large amount of background noise removed by the segmentation algorithm.
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Figure 10: Human Limb data set results. Up row: limb recovery without ST-GrabCut segmentation.
Down row: limb recovery with ST-GrabCut segmentation.

Figure 11: Application of face recovery on human body limb data set.
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This general and full-automatic human segmentation, pose recovery, and tracking methodology
showed higher performance than classical approaches in public image sequences and a novel Human
Limb data set from uncontrolled environments, which makes it useful for general human face and
gesture analysis applications.

One of the limitations of the method is that it depends on the initialization of the ST-GrabCut
algorithm. Moreover, due to its sequential application, false seed labeling can accumulate segmen-
tation errors along the video sequence.

As future work, we want to include the spatio-temporal coherence of the segmentations inside
the graph-cuts framework. More specifically, we plan to modify not only the potentials of the
energy function -and adding new ones-, but also the graph topology. Instead of just segmenting
one frame at a time, graph-cuts can be applied on N -dimensional volumes, allowing us to segment
multiple frames at a time by building a 3-dimensional graph. Additionally, the pixel connections
neighbourhood can also be changed in order to increase or decrease the influence area of one pixel
label to the surrounding ones. Furthermore, we plan to add shape constraints on the segmentation
method as in the recent published works Varun Gulshan and Zisserman (2010); Brian L. Price
(2010), trying to obtain more accurate segmentations.

Another line of research would be to feedback the segmentation methodology with the pose
information of the subject. It seems probable that this iterative bidirectional information flow would
improve both segmentation and pose recovery results. Moreover, this feedback from the pose infor-
mation could be used to perform a multi-label segmentation of the image. This way, instead of just
obtaining a binary segmentation -background, foreground-, we could be able to segment each body
part separately.

Finally, we also plan to extend the limb recovery approach so that more complex poses and
gestures can be recognized, and feed a gesture recognition system ( Alon et al. (2009)) with the
temporal aggregation of the recovered poses along the sequence in order to look for motion patterns
of the limbs. With this information, we would be are able to perform action recognition as well as
human behaviour analysis, which can be very useful for psychological studies.
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de las Heras, J. Almazan, D. Fernandez, M. Piñol and C. Davesa for their encouragements towards
me and the nice moments we shared along the master.

My most special thanks to my family and friends, specially to my parents who always did their
best for me.

17



ANTONIO HERNÁNDEZ
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